All publications

PBH dark matter from axion inflation

Date of publication: 

2017-04-11 15:00:00


Valerie Domcke, Francesco Muia, Mauro Pieroni, Lukas T. Witkowski

Protected by an approximate shift symmetry, axions are well motivated candidates for driving cosmic inflation. Their generic coupling to the Chern-Simons term of any gauge theory gives rise to a wide range of potentially observable signatures, including equilateral non-Gaussianites in the CMB, chiral gravitational waves in the range of direct gravitational wave detectors and primordial black holes (PBHs). In this paper we revisit these predictions for axion inflation models non-minimally coupled to gravity. Contrary to the case of minimally coupled models which typically predict scale-invariant mass distributions for the generated PBHs at small scales, we demonstrate how broadly peaked PBH spectra naturally arises in this setup. For specific parameter values, all of dark matter can be accounted for by PBHs.

Dedicated to the memory of Pierre Binétruy

Detection prospects for the Cosmic Neutrino Background using laser interferometers

Date of publication: 

2017-04-11 10:00:00


Valerie Domcke, Martin Spinrath

The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it was exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup could simultaneously function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.

Universality in generalized models of inflation

Date of publication: 

2017-04-06 11:00:00


Pierre Binétruy, Joel Mabillard, Mauro Pieroni


We discuss the cosmological evolution of a scalar field with non standard kinetic term in terms of a Renormalization Group Equation (RGE). In this framework inflation corresponds to the slow evolution in a neighborhood of a fixed point and universality classes for inflationary models naturally arise. Using some examples we show the application of the formalism. The predicted values for the speed of sound and for the amount of non-Gaussianities produced in these models are discussed. In particular, we show that it is possible to introduce models with speed of sound that can be in agreement with present cosmological observations.

A Unified Model of D-Term Inflation

Date of publication: 

2017-02-07 11:00:00


Valerie Domcke, Kai Schmitz

Hybrid inflation, driven by a Fayet-Iliopoulos (FI) D term, is an intriguing inflationary model. In its usual formulation, it however suffers from several shortcomings. These pertain to the origin of the FI mass scale, the stability of scalar fields during inflation, gravitational corrections in supergravity, as well as to the latest constraints from the cosmic microwave background. We demonstrate that these issues can be remedied if D-term inflation is realized in the context of strongly coupled supersymmetric gauge theories. We suppose that the D term is generated in consequence of dynamical supersymmetry breaking. Moreover, we assume canonical kinetic terms in the Jordan frame as well as an approximate shift symmetry along the inflaton direction. This provides us with a unified picture of D-term inflation and high-scale supersymmetry breaking. The D term may be associated with a gauged U(1)_B-L, so that the end of inflation spontaneously breaks B-L in the visible sector.

Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves

Date of publication: 

2016-12-25 11:00:00


Nicola Bartolo, Chiara Caprini, Valerie Domcke, Daniel G. Figueroa, Juan Garcia-Bellido, Maria Chiara Guzzetti, Michele Liguori, Sabino Matarrese, Marco Peloso, Antoine Petiteau, Angelo Ricciardone, Mairi Sakellariadou, Lorenzo Sorbo, Gianmassimo Tasinato

We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

Supergravity Contributions to Inflation in models with non-minimal coupling to gravity

Date of publication: 

2016-12-21 11:00:00


Kumar Das, Valerie Domcke, Koushik Dutta

This paper provides a systematic study of supergravity contributions relevant for inflationary model building in Jordan frame supergravity. In this framework, canonical kinetic terms in the Jordan frame result in the separation of the Jordan frame scalar potential into a tree-level term and a supergravity contribution, which is potentially dangerous for sustaining inflation. We show that if the vacuum energy necessary for driving inflation originates dominantly from the F-term of an auxiliary field (i.e. not the inflaton), the supergravity corrections to the Jordan frame scalar potential are generically suppressed. Moreover, these supergravity contributions identically vanish if the superpotential W vanishes along the inflationary trajectory. On the other hand, if the F-term associated with the inflaton dominates the vacuum energy, the supergravity contributions are generically comparable to the globally supersymmetric contributions. In addition, the non-minimal coupling to gravity inherent to Jordan frame supergravity significantly impacts the inflationary model depending on the size and sign of this coupling. We discuss the phenomenology of some representative inflationary models, and point out the relation to the recently much discussed cosmological `attractor' models.

Universality for quintessence

Date of publication: 

2016-11-30 11:00:00


F. Cicciarella, M. Pieroni

Abstract :

Several recent works suggested the possibility of describing inflation by means of a renormalization group equation. In this paper we discuss the application of these methods to models of quintessence. In this framework a period of exponential expansion corresponds to the slow evolution of the scalar field in the neighborhood of a fixed point. A minimal set of universality classes for models of quintessence is defined and the transition from a matter dominated to quintessence dominated universe is studied. Models in which quintessence is non-minimally coupled with gravity are also discussed. We show that the formalism proves to be extremely convenient to describe quintessence and moreover we find that in most of the models discussed in this work quintessence naturally takes over ordinary matter.

Classification of inflationary models and constraints on fundamental physics

Date of publication: 

2016-11-11 11:00:00


Mauro Pieroni

This work is focused on the study of early time cosmology and in particular on the study of inflation. After an introduction on the standard Big Bang theory, we discuss the physics of CMB and we explain how its observations can be used to set constraints on cosmological models. We introduce inflation and we carry out its simplest realization by presenting the observables and the experimental constraints that can be set on inflationary models. The possibility of observing primordial gravitational waves (GWs) produced during inflation is discussed. We present the reasons to define a classification of inflationary models and introduce the \beta-function formalism for inflation by explaining why in this framework we can naturally define a set of universality classes for inflationary models. Theoretical motivations to support the formulation of inflation in terms of this formalism are presented. Some generalized models of inflation are introduced and the extension of the \beta-function formalism for inflation to these models is discussed. Finally we focus on the study of models where the (pseudo-scalar) inflaton is coupled to some Abelian gauge fields that can be present during inflation. The analysis of the problem is carried out by using a characterization of inflationary models in terms of their asymptotic behavior. A wide set of theoretical aspects and of observational consequences is discussed.

Consistency of the Planck CMB data and ΛCDM cosmology

Date of publication: 

2016-10-24 12:00:00


Arman Shafieloo, Dhiraj Kumar Hazra

We test the consistency between Planck temperature and polarization power spectra and the concordance model of Λ Cold Dark Matter cosmology (ΛCDM) within the framework of Crossing statistics. We find that Planck TT best fit ΛCDM power spectrum is completely consistent with EE power spectrum data while EE best fit ΛCDM power spectrum is not consistent with TT data. However, this does not point to any systematic or model-data discrepancy since in the Planck EE data, uncertainties are much larger compared to the TT data. We also investigate the possibility of any deviation from ΛCDM model analyzing the Planck 2015 data. Results from both TT and EE data analysis indicate that no deviation is required beyond the flexibility of the concordance ΛCDM model. Our analysis thus rules out any strong evidence for beyond the concordance model in the Planck spectra data. We also report a mild amplitude difference comparing temperature and polarization data, where temperature data seems to have slightly lower amplitude than expected (consistently at all multiples), as we assume both temperature and polarization data are realizations of the same underlying cosmology.

Metastable Dark Energy with Radioactive-like Decay

Date of publication: 

2016-10-17 11:00:00


Arman Shafieloo, Dhiraj Kumar Hazra, Varun Sahni, Alexei A. Starobinsky

We propose a new class of metastable dark energy (DE) models in which the DE decay rate does not depend on external parameters such as the scale factor or the curvature of the Universe. Instead, the DE decay rate is a function only of the intrinsic properties of DE and, in this sense, resembles the radioactive decay of particles and nuclei. As a consequence, the DE energy density becomes a function of the proper time elapsed since its formation, presumably in the very early Universe. Such a natural type of DE decay can profoundly affect the expansion history of the Universe and its age. Metastable DE can decay in three distinct ways: (i) exponentially, (ii) into dark matter, (iii) into dark radiation. Testing metastable DE models with observational data we find that the decay half-life must be larger than the age of the Universe. Models in which dark energy decays into dark matter lead to lower values of the Hubble parameter at large redshifts relative to ΛCDM. Consequently these models provide a better fit to cosmological BAO data (especially data from from high redshift quasars) than concordance (ΛCDM) cosmology.


Connect with us

We're on Social Networks. Follow us & get in touch.